EnerSalvis

Energy Storage System

User Manual

3, 4, 5 kW

Table of Contents

Fo	preword	3
Sa	afety Instructions	4
1.	Introduction	7
	1-1.External Dimensions	7
	1-2.Equipment Description	9
2.	Installation	12
	2-1. Unpacking	12
	2-2. Installation Site Requirements	13
	2-3. Wall Mount Installation	15
	2-4. Electrical Installation	19
	2-5. AC Input/Output Installation	20
	2-6. AC Back-up Power Installation	23
	2-7. Solar Panel Input Wiring	26
	2-8. Battery Cabinet Installation	28
	2-9. Smart Meter Installation	35
3.	Operation and Function Description	40
	3-1.ESS-INV 2.9 Inch Panel Function Description	40
	3-1-1. 2.9 Inch Panel Measurement Message Display Operations	41
	3-1-2. 2.9 Inch Panel Solar Inverter Status Description	45
	3-1-3. 2.9 Inch Panel Solar Inverter Setting Mode Description	46
	3-2.ESS-MET Function Description	49
	3-2-1.Main Page Function Description	50
	3-2-2.Information Page Description	54
	3-2-3.Setting Page Description	
	3-2-4.Meter Function Description	
	3-2-5.Curve Display Page Description	67

	3-3. Communication Interface	69
	3-4. Control Mode Description	70
	3-4-1. Self-Consumption Control	70
	3-4-2. Scheduling Control	72
4.	Troubleshooting and Solutions	75
5.	Specifications Table	84

Foreword

Thank you for purchasing ESS Series 3300/4000/5000.

We are a specialized manufacturer of power equipment, with years of experience in development and production. We hope that this equipment will facilitate smooth and error-free operation of your solar system for years to come. However, a power system with PV inverter is a complicated system and failures may occur. If you encounter any errors or malfunctions in the PV inverter or system, please call us or the local distributor. We will provide prompt assistance to solve your problems.

Please read this user manual carefully to ensure quick and correct installation of the equipment.

Safety Instructions

- Please read all the installation instructions in this ESS user manual before installing or maintaining your system.
- The ESS should be opened by qualified electrical technicians only.
- When the photovoltaic array is exposed to light, it supplies a d.c. voltage to the ESS.

• ESS must be disconnected from the utility and make sure that there is no accidental connection with the utility. The PV array must also be disconnected with ESS.

• After the ESS is shut down and the utility and the PV array are disconnected from ESS, please wait for the internal capacitor to discharge before opening the unit for maintenance.

• Warning

Warning label descriptions:

Symbol	Description
4	Caution, Risk of electric shock!
\bigwedge	Caution, Danger!
^	Caution, high temperature on surface!
<u></u>	The temperature on the surface of the ESS case might exceed +70 °C.
	Caution, Risk of electric shock!
10min	Residual energy release time!
Í	Please refer to the user manual!

• Repair and Maintenance

ESS should be repaired by trained electrical technicians only.

• PV Array

When installing and configuring the PV array, make sure that the PV array's rated voltage parameters which provided by the manufacturer could meet the applicable specifications. Make sure the open-circuit voltage of the PV array under intensive sun, with ambient temperature of -13°F (-25°C), does not exceed maximum withstanding voltage of EnerSolis (500Vdc). Voltage exceeding 500Vdc will cause permanent damage to ESS.

Grid Connection

Only the distributor whom has a licensed electrical engineer can install the PV inverter. To install and operate to the grid require the permission from the local power company. Please contact your local distributor for installation details.

1. Introduction

The Energy Storage System includes: Photovoltaic inverter(ESS-INV), battery cabinet (ESS-BAT) and smart meter (ESS-MET).

1-1.External Dimensions

✓ Photovoltaic inverter(ESS-INV) equipped with a battery cabinet(ESS-BAT)

Model Dimensions (mm)	ESS3300/ESS4000/ESS5000
Width(max.)	825
Height(max.)	810
Depth(max.)	270

✓ Smart meter (ESS-MET)

Model Dimensions (mm)	ESS-MET
Width	343
Height	403
Depth	106

1-2.Equipment Description

[1] Photovoltaic inverter (ESS-INV):

The photovoltaic inverter of the energy storage system not only can convert the power generated by the sun into utility grid, it can also control the charging/discharging functions of the battery to adjust the power flow of the solar system.

[2] LCD display panel and LED indicators:

Displays operating information and status of the photovoltaic inverter.

[3] Battery cabinet (ESS-BAT)

A standard battery **cabinet** is equipped with 6kWh battery, and allows a maximum of two battery cabinets to be connected using parallel connection, which is 12kWh of battery capacity.

[1] DC Breaker:

If the breaker is ON

Battery is connected to the photovoltaic inverter.

If the breaker is OFF

Battery is disconnected from the photovoltaic inverter.

[2] Battery DC terminal (inverter):

Connects to the positive and negative terminals of the battery in the battery cabinet.

[3] Battery communication terminal (inverter):

Connects to the battery communication terminal of the battery cabinet.

[4] Optional Communication Interface expansion slot:

Functions such as USB, Dry Contact and TCP/IP can be purchased optionally.

[5] AC terminal unit:

Connects to the utility grid so that the power generated by the photovoltaic inverter can be feed into the utility grid, or use the utility grid to charge the battery.

[6] Photovoltaic array DC input terminal:

Connects to the photovoltaic array input.

[7] Communication terminal:

The communication terminal used to connect the photovoltaic inverter and ESS-MET.

[8] AC Back-up power output terminal:

Outputs back-up power to the emergency load when power failure

[9] Battery DC terminal (battery cabinet):

Connects with battery terminals of the photovoltaic inverter.

[10] Battery communication terminal (battery cabinet):

Connects to the battery communication terminal of the photovoltaic inverter.

[1] LCD touch screen:

Used to monitor the energy storage system, including the operation status of the photovoltaic inverter, solar power generation capacity, battery capacity and power usage status. It can also change the control setting of the energy storage system.

[2] LED indicator:

Used to display the operation information and status of the photovoltaic inverter.

2. Installation

Please read the safety instructions before installing the ESS.

2-1. Unpacking

Although the manufacturer designed robust packaging for the product, but it may still get damaged during the transportation process. Please check the energy storage system upon receiving it and notify the dealer if the machine is damaged. (The external packaging can be recycled and used repeatedly.)

Remove the energy storage system from the cardboard box and check the contents of the package. Standard accessories include:

- ✓ One accessory pack.
- ✓ One data CD.
- ✓ One wall-mount kit set (backrest and backboard positioning paper).

Standard accessory

If the battery cabinet needs to be expanded, the expansion accessory required is as follows:

Expansion battery accessory

x2 for expanded ESS-BAT use

2-2. Installation Site Requirements

The weight of the photovoltaic inverter must be considered when selecting an installation site and method.

An appropriate installation site can effectively exert the functions of the photovoltaic inverter and reduce the chance of malfunctioning. It can also prolong the usage life of the photovoltaic inverter. Please refer to the following recommendations to select the most suitable location to install the photovoltaic inverter.

The photovoltaic inverter uses an outdoor design and complies with the IP65 protection level, allowing it to be installed outdoors and in humid environments. The power generating capacity of the photovoltaic inverter will be affected by the temperature and humidity of the environment, or if it was installed at an inappropriate location. It is recommended not to install it at a location exposed to direct sunlight and has an environmental temperature between the -25°C to +50°C range.

The design of the photovoltaic inverter allows it to be vertically mounted into the wall; therefore it must be confirmed whether the wall-mount location will allow the photovoltaic inverter to tilt forward/backwards.

When selecting an installation site, there must be sufficient space for the heat generated from photovoltaic inverter operations to be emitted. The recommended space to reserve for radiating is as shown in the figure below.

2-3. Wall Mount Installation

It is recommended to use the enclosed backplane to mount the PV inverter on the wall. When selecting an installation location, be sure to consider whether it can withstand the weight of PV inverter. It is recommended to install the unit vertically on a solid concrete or a brick wall.

Wall mount installation steps

Step 1:

Place the backplane positioning paper on the wall to install, and drill holes according to the aperture of the backplane mounting holes. Finally fix the backplane onto the wall.

Backplane positioning paper

✓ If there is the need for battery cabinet expansion, an additional battery cabinet backplane must be installed.

Backplane positioning paper

Step 2:

Hang the inverter on the wall mount, and confirm whether it is properly fixed in the mounts. Finally lock the nuts on the four corners tightly in place.

wall mount for ESS-INV

Step 3:

Hang the battery cabinet on the wall mount, and confirm whether it is properly seated in the mounts. Finally, lock the nuts on the four corners tightly in place.

wall mount for ESS-BAT

Step 4 (please skip this step if there's no expansion battery cabinet):

Hang the second set of battery cabinet on the wall mount, and confirm whether it is properly fixed in the mounts. Finally, lock the nuts on the four corners tightly in place.

wall mount for expanded ESS-BAT

Step 5:

Check whether the inverter and battery cabinet is properly installed on the wall; It must not be tilted. This completes the wall mount installation.

2-4. Electrical Installation

Confirm that the AC breaker between the inverter and utility grid is installed. Note: AC breaker is recommended as below.

Model	Ue	le
ESS-INV-3	240Vac	20A
ESS-INV-4	240Vac	25A
ESS-INV-5	240Vac	30A

- Confirm that the breaker between the inverter and the photovoltaic array is installed. Note: The Ue: 600Vdc / le:20A specification breaker is recommended.
- Confirm that the breaker between the inverter and back-up power load is installed. Note: AC breaker is recommended as below.

Model	Ue	le
ESS-INV-3	240Vac	20A
ESS-INV-4	240Vac	25A
ESS-INV-5	240Vac	30A

- The AC and breakers must be disconnected when installing the inverter.
- It must be confirmed that the power of the AC and breakers are not connected during installation.

2-5. AC Input/Output Installation

Step 1:

Confirm whether the utility grid voltage and frequency are within the inverter specifications.

Step 2:

Before installing the AC input/output of the inverter, please confirm whether the circuit breaker connected to the utility grid is open. The utility grid circuit breaker can only be closed when the electrical installation of the photovoltaic inverter is completed.

Step 3:

Remove the AC output cover.

Step 4:

Wire the AC output according to the recommended wire diameter and the steps shown in the figure below.

Recommended AC output wiring wire diameter

Model Diameter Φ(mm)	Area (mm ²)	AWG no.
----------------------	-------------------------	---------

ESS3300	>2.05	>3.5	>12
ESS4000	≥2 59	≥5.5	≥ 10
ESS5000	-2.00	-0.0	- 10

To prevent the risk of electrical shock, please confirm the ground cable is properly grounded before operating the photovoltaic inverter.

Step 5:

Lock the AC waterproof cover properly.

2-6. AC Back-up Power Installation

Step 1:

Before installing the AC back-up power, please confirm whether the circuit breaker connected to the utility grid is open. The utility grid circuit breaker can only be closed when the electrical installation of the photovoltaic inverter is completed.

Step 2:

Remove the cover of the AC back-up power input.

Step 3:

Wire the AC back-up power output according to the recommended wire diameter and the steps shown in the figure below.

Recommended AC back-up power output wiring wire diameter

Model	Diameter Φ(mm)	Area (mm ²)	AWG no.
ESS3300	>2.05	>3.5	>12
ESS4000	≥2.59	≥5.5	≥ 10

It is recommended to connect the AC back-up power output to the AC breaker, and then connect it to the load.

To prevent the risk of electrical shock, please confirm the ground cable is properly grounded before operating the photovoltaic inverter.

Step 4:

Lock the AC waterproof cover properly.

2-7. Solar Panel Input Wiring

1. **Standard mode:** Allows two independent strings configured with different numbers of photovoltaic arrays, as shown in the figure below.

2. **Parallel connection mode:** When a single string of photovoltaic array is connected to string A and String B, users must enter setting mode to make modifications as shown in the figure below. (The setting mode is explained in Chapter 3-1-3.)

Recommended PV panel input wiring wire diameter

Model	Diameter Φ(mm)	Area (mm ²)	AWG no.
ESS-INV-3	>2.05	>3.5	>12
ESS-INV-4 ESS-INV-5	≥2.59	≥5.5	≥ 10

2-8. Battery Cabinet Installation

Step 1:

Please do not place the battery pack into the battery cabinet before installing the battery cabinet cables, and confirm that the DC breaker on the inverter is at the OFF status.

Step 2:

Install the wiring between the battery cabinet and the inverter. Each battery cabinet is equipped with two sets of positive/negative terminals and communication terminal.

Please refer to the explanations in the following figure below according to the number (1 or 2) of battery cabinets users selected.

✓ Equipped with 1 battery cabinet (standard configuration)

Equipped with 2 battery cabinets

Step 3:

Open the front cover of the battery cabinet, then place the battery packs in place in the order from bottom to top(as the figure below 1~3) and lock in the screws on both sides to keep them in place.

Step 4:

Insert the battery output terminal into the connector on the battery cabinet, and use the screw to lock the iron plate to keep the terminal in place.

Step 5:

Connect the communication cable.Please wire according to the connection method shown in the figure below.

Step 6:

Use the flip-switch on the battery pack to set the following items:

1. Communication ID:

Set the battery pack ID from bottom to top; the ID must be set starting from 1 and must be consecutive numbers. The maximum ID is 6.

*Please do not set the ID as nonconsecutive numbers, such as 1, 2, 4 or starting from numbers other than 1, such as 2, 3, 4.

2. Terminating battery pack

The terminating battery pack only needs to be turned on for the battery pack with the last communication ID.Its goal is to increase the stability for communication.

Please refer to the explanations in the figure below for setting methods of the communication ID and terminal resistance. Switching the flip-switch to the bottom means Off and switching it to the top means On. Please refer to the ID setting table for ID settings.

ID setting switch

2	3	4	ID
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6

Communication ID and terminal resistance setting example

✓ Equipped with one battery cabinet and 3 battery packs.

✓ Equipped with two battery cabinets and 6 battery packs.

Step 7:

Cover the top cover of the battery cabinet and turn on the DC breaker on the inverter to complete all battery cabinet installation.

Turn on DC breaker. Ø đ Q 0 B,

2-9. Smart Meter Installation

Step 1:

Install the smart meter on the wall and use screws to lock each corner.

Step 2:

Open the outer door of the smart meter, install CTs and wiring AC input cables to the terminals inside the **ESS-MET**.

CT definition

There are 2 CT as standard accessories of **ESS-MET.** 1P2W system: Only one CT need to be installed. 1P3W system: Two CTs need to be installed. The CT must be installed at the point of common coupling(PCC).

According to the system connection(1P2W / 1P3W), please refer the figure below to install the CTs and wiring cables.

IP2W system

- 1. Wiring AC input cables to the terminals, Line, Neutral, Ground.
- 2. Placing the CT at the point of common coupling of hot wire(Line) so that the CT is able to measure the current which includes **ESS-INV** and load.
- 3. The direction of CT is from grid to load.

■ 1P3W system

- 1. Placing the CT at the point of common coupling of each hot wire(Line-1, Line-2) so that CTs are able to measure the current which includes **ESS-INV** and load.
- 2. Wiring AC input cables to the terminals, Line, Neutral, Ground.
- 3. The direction of CT is from grid to load.

Step 3:

Wiring RJ45 cable from **ESS-INV** to **ESS-MET** for RS485 communication.

- 1. Make a RJ45 cable and wiring from ESS-INV to the terminals of RS485-1.
- 2. Pin8 as Data+/A, Pin7 as Data-/B.
- 3. There are two RJ45 port on the ESS-INV can be use, each port is connect in parallel inside so just select one port for communication with ESS-MET and the other one is use for ESS-INV parallel requirement.
- 4. The terminals of RS485-2 is reserved for slave mode which provide the function to monitor the system by external devices.

Step 4:

Turn on the AC breaker to complete the installation of the smart meter.

3. Operation and Function Description

This chapter will introduce all operations and descriptions of the ESS system.

3-1.ESS-INV 2.9 Inch Panel Function Description

(1) LCD display						
Symbol	Description					
	Photovoltaic inverter operating under special					
	mode					
 	Ground malfunction or DC input insulation					
= :	resistance too low.					
LINE	Utility grid power					
<i></i>	Photovoltaic array					
PCS	Photovoltaic inverter					
	Photovoltaic inverter power generation					
LUAD	indicator					
LINE	Operation flow display, which means the					
- PCS - LOAD	relationship between the photovoltaic inverter,					
	photovoltaic array input and AC output power.					
88.88¢	Photovoltaic inverter measured value display					

LED I	ight	
(2)		When the red LED lights up it means that the
(2)		photovoltaic inverter malfunctioned
		When the yellow LED lights up it means that
(3)	\mathbb{A}	the electrical conditions exceeded the allowed
		operating range of the photovoltaic inverter
		When the green LED lights up or flashes, it
(4)	===	means that the energy generated by the solar
		panel is larger or less than the sleep power of
		the photovoltaic inverter
Butto	ons	
(5)	B	Set/Search
(6)		Previous page
(7)	▼	Next page
(8)	┙	Confirm setting changes

3-1-1. 2.9 Inch Panel Measurement Message Display Operations

When the photovoltaic inverter activates, all LED indicators light up and all LCD display symbols will light up, as shown in Figure A below.

Α

Below are the descriptions of each power parameter displayed on the LCD display when the inverter operates; use the \blacktriangle and \checkmark buttons to flip and view the pages; illustration of the display screen is as shown below.

String A input voltage is as shown in Figure B.

Output frequency is as shown in Figure I.

When the accumulated power generation capacity exceeds 10000KWH, the power generation capacity information will be displayed with rotation; for example when the accumulated power generation capacity is 999999KWH, it will be as shown in Figure L1 and L2.

The chassis temperature can be displayed in Celsius or Fahrenheit, as shown in Figure M1 and M2.

The heatsink temperature can be displayed in Celsius or Fahrenheit, as shown in Figure N1 and N2.

N1

$$IINE$$

 $PCS - LOAD$
 $IIINE$
 $IIIINE$
 $IIINE$
 I

3-1-2. 2.9 Inch Panel Solar Inverter Status Description

When the voltage of the photovoltaic array exceeds 120Vdc, the photovoltaic inverter will start operating automatically.

Mode	LCD display screen	Description
Power generation		When the voltage of the photovoltaic array is between 120Vdc ~ 500Vdc, the photovoltaic inverter will be in the power generating status.The green LED light will remain lit at this time.
Standby		When the voltage of the photovoltaic array is under 120Vdc, the photovoltaic inverter will enter standby mode.The green and yellow LED lights will flash individually during this time.
Malfunctio		When the electric condition is abnormal, the code for the anomaly will be displayed on the LCD display; the yellow LED light will flash during this time.
n		When the photovoltaic inverter malfunctions, the malfunction code will be displayed on the LCD display; the red LED light will flash during this time.
EPO	LINE PCS	Emergency power off. When the user short-circuit the EPO terminal, the photovoltaic inverter will stop output immediately and remain in standby mode.The red LED light will flash during this time.
Power Off		When the photovoltaic array is unable to generate sufficient energy (such as at night or cloudy days), the photovoltaic inverter will automatically power off and stop output.

The following table describes the various modes of photovoltaic inverter operations:

3-1-3. 2.9 Inch Panel Solar Inverter Setting Mode Description

Notes when setting the photovoltaic inverter:

- a Confirm that the solar inverter and utility grid is disconnected.
- b Only allow electrical technicians with professional training to operate on-site.
- c Settings mode allows changing of country setting, set the photovoltaic arrayto standard or parallel connection mode, and machine number.
- d Please make changes to the settings as needed.Do not change any other settings or else it might cause the photovoltaic inverter to operate abnormally.

Please use the following steps to complete setting mode changes:

- Step 1: Press the "p buttonre (\blacktriangle) and down button (∇) on the panel simultaneously for approximately five seconds to enter settings mode.
- Step 2: After entering the setting mode, the first thing to set is the country. SET and the country will take turns to be displayed on the panel at this time, and display as shown in Figure O1 and O2 below. Use the "Up" button (▲) and "Down" button (▼) at this time to change the country setting.

	Note:
$\mathbf{\Lambda}$	Do not randomly change the country setting as doing so
$\angle ! $	might result in the photovoltaic inverter unable to
	operate normally.

Ren	Remark:									
The	The country codes are as follows									
de	/ Germany	es	/ Spain	it	/ Italy					
fr	/ France	be	/ Belgium	tw	/ Taiwan					
us	/ U.S.A	pt	/ Portugal	au	/ Australia					
а										
gb	/ U.K.	cz	/ Czech	gr	/ Greece					
nl	/ Holland	sl	/ Slovenia	at	/ Austria					
јр	/Japan	ch	/ China	kr	/ Korea					
ec	/ custom									

01

PCS

PCS

Step 3: Please press the "nterbuttons (←) to enter the settings to set the photovoltaic array as standard or parallel connection mode. Use the "p buttonar(▲) and "Down" button(▼) to change between standard or parallel connection mode, which shows individually as Figures P1 and P2 below.

Step 4: Please press the "nterbuttonse(\leftarrow) to enter settings for the photovoltaic inverter machine number. The SET and ID will take turns to display on the panel at this time, which shows individually as Figures O1 and Q below. Use the "p buttonow(\blacktriangle) and "Down" button(∇) at this time to change the machine number setting.

Step 5: Please press the "nterbuttonse(←) to end settings mode. "SAVE" will be displayed on the panel at this time as shown in Figure R.

Step 6: Wait until saving is complete and then please restart the photovoltaic inverter.

3-2.ESS-MET Function Description

[1] LED status display:

Displays the current operating status of the ESS system.

Indicator	Status	Description
Green light	Constantly On	ESS operating normally
Red light	Constantly On	ESSError occurred

[2] LCD touch panel:

The panel is used to control and monitor the ESS system. Icon descriptions of frequently used functions are as follows:

lcon	Description
	Save function: Saves the changed setting/parameter into memory.
	Note: Changed parameters must be saved in order for them to take effect.
$\boldsymbol{\zeta}$	Reload/reset: Reload the data or clear abnormal status.
	Return to the previous page.
$\mathbf{\hat{\mathbf{O}}}$	Execute function: Start activating the selected control mode.
	Stop function: Ends the currently executing control mode.
	Read status: Means currently reading data.
	Mute function: Turns off the buzzer.

3-2-1.Main Page Function Description

- **[1] Function menu:** Click to open the function menu.
- [2] Power company icon.
- [3] Energy storage system inverter icon.
- [4] Solar panel icon.
- [5] Load icon.
- [6] Power display.
- [7] Power flow display.
- [8] Battery icon: Color changes between red, yellow and green according to the state-of-charge (SOC).
- [9] Battery information display: Voltage, state-of-charge (SOC).
- [10] Communication connection status display: Connected; Misconnected.
- [11] System status and purchase/feed-in of electricity record display.
- [12] System date and time display: Click to change the time and date settings.
- [13] User login/logout: Click to login/logout user account.

Function menu

Function menu: Setting, Meter, Profile, Information.

Function menu block figure:

Abnormal status display

When the ESS or power system shows abnormal status, the field at the bottom of the main page will display a simple abnormal status reminder. If there are more than abnormal statuses, they will be displayed in turns.

Users can also click the abnormal status directly to view details, including the error code (please refer to chapter four Troubleshooting and solutions for corresponding error codes).

User login

Users can login to their accounts by pressing the login button at the bottom of the main screen in order to gain different privileges. Once a user has logged in, the original login screen will change to a logout button.Click this button to logout.

	User Na	ame:)K	(4)	Menu
SHULLE	Password:				[2]		[2] Exit [5]		[5]		
TIME	New User Name:										$\overline{\Box}$
	New Password:				[3]					F ìl	
	Connfir	m Pass	word:								
Purchasing	1	2	3	4	5	6	7	8	9	0	
Battery: Die	a	b	с	d	е	f	g	h	i	j	
Purchased:	k	Ι	m	n	о	р	q	r	s	t	
Feed-in:	u	v	w	×	(y z Shift ←			(ne System		
MET: 🥖 IN	IV: 🥖 C	DC/DC:	/					Login		2017/4/6	11:54
							[1] 4				

- [1] Click to open the login screen.
- [2] Enter the account and password.
- [3] Create new account.
- [4] Ok
- [5] Exit the login screen.

3-2-2.Information Page Description

3-3-2-1.ESS-INV

	Menu
ESS-INV ESS-BAT ESS-MET	
INVERTER	DC/DC CONVERTER
Module Number: ESS_INV 5000	Rated Power: 2500W
Rated Power: 5000W	Rated Voltage: 48V
MCU Ver.: 1.29	Rated Discharge: 55A
·	Rated Charge: 55A
	MCU Ver.: 1.29
	Certificate Ver.: ES000011
	'' [*] [2]
MET: 🥖 INV: 🖉 DC/DC: 🥖	Login 2017/4/6 15:47

[1] Inverter information:

Model: Inverter model number.

Rated power: Displays the rated power of inverter

Firmware version: Displays the controller firmware version of the inverter.

[2] DC/DC converter information:

Rated power: Displays the rated power of DC/DC converter

Rated voltage: Rated voltage (battery terminal) of the DC/DC converter.

Firmware version: Displays the controller firmware version of DC/DC converter.

Certificate version: Displays the certificate version of the inverter.

					Menu
ESS-INV ESS-I	BAT ESS-MET	•]			
Туре:	Li-ion	[1]			
Nominal Vol	t: 48V	[2]			
Total Capac	ity: 2kwh	[3]			
		-			
			 	Lesis	2017/4/6 14:14
MET. // INV: //	DC/DC.			Login	2017/4/0 14.14

- **[1] Type:** Displays the type of battery packs.
- [2] Nominal voltage: Displays the nominal voltage of the equipped battery.
- [3] **Total Capacity:** Displays the total capacity of the equipped battery.

ESS-INV ESS-BAT	ESS-MET		
Module Number:		🖸 Obtain an 🛙	IP address via DHCP
OS Ver.:	ED10153Q	IP Address:	169.254.45.20
Software Ver.:	1.02	Subnet Mask:	255.255.0.0
MCU Ver.:	1.02	Gateway:	192.168.7.1
		DNS:	168.95.192.1
Cloud Server St	atus	MAC Address:	000F7E04102E
Connected server Collect data		[2]	
	[1]		
1ET: 🥖 INV: 🥖 D	C/DC: 🥖		Login 2017/4/6 14:15

[1] ESS-MET information:

Model: ESS-MET model number.

OS version: OS (operating system) version of ESS-MET.

Software version: Software version of ESS-MET.

Firmware version: Firmware version of ESS-MET.

Cloud server status: Displays the connection status between ESS-MET and the cloud server.

[2] ESS-MET network setting information:

Displays the host IP, subnet mask, gateway, DNS and MAC Address (network card) information.

3-2-3. Setting Page Description

1. Control setting:

Self-consumption or **Scheduling** control modes can be selected according to the contract between the power company. When the user selects a control mode, the save icon in the pressed to change the settings.

				Menu
Control Setting Syste	m Setting Other			
ESS Control: Feed-in Power:	Self-Consumption 💌 Self-Consumption Scheduling	Limit 5.0 kW		
Procedure:	Stop			
Status:	Stop			
MET: 🥖 INV: 🥖 DC/I	DC: 🥖		Login	2017/4/6 11:58

Self-consumption mode setting

Users can select whether feed-in powertoutility grid under this mode. The default setting of feed-in power is Not Allowed, if users change the setting to Allowed, it is need to enter the limit value of feed-in power(1-5kW).

Feed-in Power:	Allowed	Limit 5.0 kW
Procedure	Allowed	
rioceduie.	Not Allowed	

During self-consumption mode execution, the procedure and status of controller will be displayed below. Users can use this status bar to find out the current operation behavior of the energy storage system.

Once the feed-in power setting is decided, the save icon in must be clicked. Then will the execute function icon icon appear. Once this icon is clicked, it will startactivating the self-consumption mode control. When execution starts, the original execute function icon will change to the stop function icon icon icon to stop the self-consumption function.

			Menu
Control Setting Syste	m Setting Other		
ESS Control:	Self-Consumption 💌		
Feed-in Power:	Not Allowed	Limit 5.0 kW	
Procedure:	Stop		
Status:	Stop		
		- I I I I I I I I I I I I I I I I I I I	
Met: 🥖 INV: 🥖 DC/	DC: 🥖	Login	2017/4/6 11:59

Scheduling mode setting

Scheduling is in accordance with the panel's current time and date setting, therefore users must first confirm whether the time settings of the panel is correct before executing this function.

Similar to self-consumption mode, users can select whether to feed-in power to utility grid. The system's default setting is not allow feed-in power; if feed-in power allowed is selected, users can also select the limit on how much power to feed (1~5kW).

Click to change the date and time

								Menu
	ont	rol Settir	g System Setting	Other				
	ES	S Contro	l: Schedulin	g 💌				
	Fe	ed-in Po	wer: Allowed	▼ 1	imit 5.0 k\	N	[4]	
		Index	Frequency	Date	Time	Action		Add • • [1]
	•	1	Everyday		0000-0030	Charge	│ ╀ │	
		2	Designated day	2017/04/07	0200-0230	Discharge		Edit • [2]
		3	Every work-day		0300-0330	Discharge	↓	
		4	Every Sunday		0300-0330	Discharge		Delete 3
					0			
ME	T:	🥖 INV:	🥖 DC/DC: 🥖 🗌			Login	2017/	4/6 13:31

[1] Add:

Add a new schedule.

Frequency:	Everyday 💽
Date:	7 / 4 /2016 🗸
Time:	3:0~3:30
Action:	Discharge Charge Discharge

When a new schedule is added, users can change the setting as below:

Frequency: Daily, every work day, every Saturday, every Sunday, specify date.

Date: The date can only be set when the frequency is set as specify date.

Time: Enter the start and end time (24-hour) of schedule execution.

Action: Select the action to execute for this schedule, charge or discharge.

[2] Edit:

Edit the schedule.

[3] Delete:

Delete the schedule.

[4] Up and Down selection button:

Selects the schedule item.

Once scheduling setting is complete, the save icon 🔝 must be clicked; then will the execute function icon 🙆 appear. Once this icon is clicked, it will start activating the scheduling mode control. When execution starts, the original execute function icon will change to the stop function icon icon 🐼.Press this icon to stop the scheduling function.

2. System Setting

			Menu
Control Setting System Setting	Other		
AC System:	1P2W •	Slave Number:	1 💌
CT Ratio:	1000:1 💌		
AC Back-up Output:	Disable		
Battery Pack Number:	1 -		
DC Input:	Standard 💌		
MET: 🥖 INV: 🥖 DC/DC: 🥖 🗌		Login	2017/4/6 14:27

[1] AC System:

There are two power system configuration can be selected. 1P2W: Single Phase Two-Wire 1P3W: Single Phase Three-Wire

[2] AC Back-up Output:

Users can select AC Back-up Output Enable/Disable ·

[3] Battery Pack Number:

Users must select the exactly equipped number of battery pack. If the number of battery pack is not correct, battery number setting error will show up.

3. Other:

	Menu
Control Setting System Setting Other	
Buzzer: Disable 🔽 [1] Re	store Factory Setting
Language: English 🔽 [2]	【4】
Screensaver: Enable 💽 3 minute 【	3]
MET: 🥖 INV: 🖉 DC/DC: 🥖	Login 2017/4/6 13:33

[1] Buzzer:

Enable/Disable Buzzer when Alarm/Error occurred •

[2] Language:

Users can select various language as: Chinese, English, Japanese, Italian, French.

[3] Screensaver:

Enable/Disable screensaver and set the idle time to start screensaver.

[4] Restore factory setting:

Restoring the settings to default.

3-2-4.Meter Function Description

The function of the meter is to provide information on the entire system, including utility grid, energy storage system (ESS) and battery.

3-2-4-1. Meter - Utility Grid

1p2w page

Tatal	Frequency		Menu
TOLAT	33.33 112		
	Voltage	Current	P
	152.10 V _{ac}	7.89 A _{ac}	-1.16 kW
	Q	S	P.F.
	0.27 kVAR	1.20 kVA	0.97
	Consumption	Feed-in	Total
	4239.3 kWh	806.9 kWh	-3121.2 kWh
			Energy Storage System
MET: 🥖 INV: 🌶	🖉 DC/DC: 🥖		Login 2017/4/6 17:13

■ 1p3w page

Total	Frequency 59.93 Hz			Menu
	Voltage	Current	Р	
	230.55 V _{ac}	5.28 A _{ac}	-1.15 k	w
L2-N	Q	5	P.F.	
	0.39 kVAR	1.21 kVA	0.94	
	Consumption	Feed-in	Total	
	10792.9 kWh	27021.3 kWh	-3121.2 k	When
				義7
			E	nergy Storage System
MET: 🥖 INV: 🌶	/ DC/DC: 🥖		Login	2017/4/6 17:10

This page according to the system connection type(1p2w/1p3w) displays the power information of the utility grid, including:

- 1. System frequency(Hz)
- 2. Voltage(Vac)
- 3. Current(Aac)
- 4. Real power(kW)
- 5. Reactive power(kVAR)
- 6. Apparent power(kVA)
- 7. Power factor P.F.
- 8. Accumulated Energy of Power consumption (kWh)
- 9. Accumulated Energy of Feed-in electricity (kWh)
- 10. Accumulated Energy of Overall energy (kWh)

	PV					Menu
		A	243 V _{dc}	2.6 A _{dc}	0.63 KW	
		B	251 V _{dc}	2.6 A _{dc}	0.63 kW	
				Total	1.28 kW	
	On-grid	d				
	$\overline{\mathbb{A}}$		228 V _{ac}	1.4 A _{ac}	-0.03 kW	
				Energy	<u>14/3</u> KVVN)
	Battery	,	50.1 V _{de}	-24.9 A _{de}	-1.247 kW	
						Energy Storage System
MET: 🥖 INV: 🥖	DC/DC:	/			Login	2017/4/6 15:57

This page displays power information of the energy storage system, including:

- PV input String A & B
 - 1. DC input voltage(Vdc)
 - 2. DC input current(Adc)
 - 3. Power of each string(kW)
 - 4. Power summation of string A&B(kW)
- On-grid
 - 1. System voltage(Vac)
 - 2. Current(Aac)
 - 3. Inverter input/output power(kW)
 - 4. Accumulated energy of PV generated power
- Battery
 - 1. Battery voltage(Vdc)
 - 2. Battery current(Adc)
 - 3. Battery power(kW)

3-2-4-3. Meter - Battery

This page displays the connection status and information of each battery pack; since ESS allows parallel connection for a maximum of 6 battery packs, therefore it displays the information for a maximum of 6 packs.

[1] Battery information:

- 1. Battery voltage Voltage(V)
- 2. Battery current Current(A)
- 3. State-of-charge of battery SOC(%)
- 4. Battery temperature Temp(°C)

% If the connection from ESS to the battery pack failed, the fields described above will display as gray empty spaces.

[2] Battery ID:

This battery ID is set from the flip-switch on the battery pack.

[3] Battery connection status icon:

E : Means that the communication between ESS and battery pack is successful and connecting.

isconnected.

3-2-5. Curve Display Page Description

3-2-5-1.Utility grid power

This page displays the utility grid power curve recorded by the system. The positive power represents consumed power and the negative power represents power of fed-in Utility grid. The system will record an entry every hour.

3-2-5-2. Solar power generation amount

This page displays the solar power generation curve recorded by the system. The system will record an entry every hour.

Utility grid power, solar power generation amount, login.

3-3. Communication Interface

RS-485Communication Interface settings are as follows:

Baud rate	9600 bps
Data length	8 bits
Stop bit	1
Parity	None

RS-485 pin definitions are as follows:

EPO (emergency power off) RJ45 connector

The inverter can be forced to power off by short-circuiting Pin4 and Pin5.

Note:	
Confirm that the cables of the RJ45	
connector are connected properly.	
The EPO function is an emergency power	
switch and remains in standby mode;	123 678
short-circuit the defined pins as shown in	
the figure to the right to force the	
photovoltaic inverter to stop operating	
immediately.	

3-4. Control Mode Description

3-4-1. Self-Consumption Control

The self-consumption control mode uses **ESS-MET** to measure the purchase/feed-in energy power of the **PCC**(Point of common coupling), and feedback this power to the controller; when the power measured at the responsibility demarcation point is positive, it is purchasing energy, and if the measured power is negative, it is feeding-in energy. The main concept is that if the battery capacity is sufficient during energy purchase, then discharge for the load to use in order to lower the energy purchase ratio; if the battery was not fully charged during energy feed-in, then save the feed-in power into the battery.

Feed-in power behaviors of the ESS system that can be set by the user in the self-consumption mode are as follows:

- 1. Do not allow feed-in.
- 2. Allow feed-in.
- 3. Allow feed-in but limited the feed-in power (set by user).

The Figures 3-A, 3-B and 3-C below is the solar power generation curve and load curve for a day. Assume that the battery capacity was in the depleted status at first, from 0:00am to 6:00am, there is load consumption. therefore, **ESS-MET** measured that it was in the purchase electricity status within this period. However, since the battery was depleted, it therefore was unable to execute the discharge function.

When the time reached the 6:00am to 9:00am period, although the solar power gradually increased at first, it was still not enough to provide all load power. Therefore, the solar power and utility grid provided the load power together.

When the time reached the 9:00am to 16:00pm period, the solar power generation power is larger than the load requirement, so the excess solar power will be processed according to the feed-in power setting set by the user.

- 1. When the user set it as "**do not allow feed-in**, as shown in Figure 3-A, the excessive solar power will first charge the battery. The charging current will be adjusted according to the battery capacity. When the battery is fully charged or that the charging power was not enough to absorb all the solar power, the inverter will limit the output power until the feed-in power of the utility grid is zero.
- 2. When the user set it as "allow feed-in", as shown in Figure 3-B, the excessive solar power will

first charge the battery. The charging current will be adjusted according to the battery capacity. When the battery is fully charged or that the charging power was not enough to absorb all the solar power, the remaining power will all be fed back to the utility grid.

3. When the user set it as "**allow feed-in but limit the feed-in power**, as shown in Figure 3-C, the excessive solar power will first charge the battery. The charging current will be adjusted according to the current feed-in power until the feed-in power of the utility grid is less than the "limit feed-in power" set by the user. When the battery is fully charged or the charging current has reached its top limit, the inverter will limit the output power.

After 17:00pm, the solar power generation power is less than the load requirement; therefore, *ESS-MET* measured that it is currently purchasing electricity and confirms that the battery capacity is sufficient. So it will discharge to supply load power until after 21:00pm when the battery power is depleted and the power required by the load afterwards are all provided by the utility grid.

Figure 3-B

3-4-2. Scheduling Control

3-2-3-2. Scheduling–Scheduling control function descriptions

Scheduling control allows **time of use** users to customize the charging/discharging time of the ESS system to charge the battery usually at night or before dawn when the electricity price is lower. During the periods when the electricity price is higher, if the solar power generating power is lower than the required load power, discharge the battery for the load to use.

As shown in figures 3-D, 3-E, 3-F, between the hours of 12:00am and 6:00am, purchase electricity with lower price to charge the battery and also purchase electricity for the load to use.

After 6:00am, ESS confirms that the battery power is sufficient, therefore it discharges for the load to use. Between the hours of 9:00am~15:00pm, the solar power generation power is greater than the load need, so now the excessive solar power will be processed according to the feed-in power setting set by the user.

- 1. When the user set it as "**do not allow feed-in**, as shown in Figure 3-D, the excessive solar power will first charge the battery. The charging current will be adjusted according to the battery capacity. When the battery is fully charged or that the charging power was not enough to absorb all the solar power, the inverter will limit the output power until the feed-in power of the utility grid is zero.
- 2. When the user set it as "**allow feed-in**, as shown in Figure 3-E, the excessive solar power will all be fed to the utility grid.

3. When the user set it as "**allow feed-in but limit the feed-in power**", as shown in Figure 3-F, the excessive solar power will first charge the battery. The charging current will be adjusted according to the current feed-in power until the feed-in power of the utility grid is less than the ntil the feed-in power of e 0.5kW is used for the explanation) set by the user. When the battery is fully charged or the charging current has reached its top limit, the inverter will limit the output power.

After 17:00pm, the solar power generation power is less than the load requirement; therefore **ESS-MET** measured that it is currently purchasing electricity and confirms that the battery capacity is sufficient. So it will discharge to supply load power until after 21:00pm when the battery power is depleted and the power required by the load afterwards are all provided by the utility grid.

When the time reaches 22:00pm, ESS will automatically activate to charge the battery.

Figure 3-E

Figure 3-F

4. Troubleshooting and Solutions

Display of Error and Alarm Codes:

- 1. LCD display of the inverter: Automatically displays the Error/Alarm code.
- 2. LCD touch display of the smart meter: Automatically displays the Error/Alarm code.

LCD Display	Cause	Description	Troubleshooting
AL00	Utility grid voltage too high	Utility grid voltage does not comply with photovoltaic	1. Disconnect the photovoltaic inverter
AL01	Utility grid voltage too low	inverter specifications	from the utility grid. 2.Confirm the wiring and architecture of the utility grid system
AL02	Utility grid voltage frequency too high	Utility grid voltage frequency does not comply with	3. Confirm whether the utility grid voltage and frequency comply with photovoltaic inverter specifications4. Restart the photovoltaic inverter. If the
AL03	Utility grid voltage frequency too low	photovoltaic inverter specifications	malfunction continues to occur, please contact the supplier.
AL04	String A input voltage too high		1. Disconnect the photovoltaic array from
AL05	String A input voltage too low	Input voltage does not comply with photovoltaic	 2. Confirm the open-circuit voltage of the photovoltaic array 3. If the open-circuit voltage of the photovoltaic array is within photovoltaic
AL06	String B input voltage too high	specifications	inverter specifications and the malfunction continues to occur, please contact the supplier.
AL07	String B input		

■ Utility grid system abnormality code description:

	voltage too low		
AL08	Island effect		1. Disconnect the photovoltaic array from
AL13	Abnormal utility grid voltage phase	No utility grid or abnormal utility grid	 disconnected the utility grid. 2. Confirm whether there are any errors in the AC wiring. 3. Confirm whether the utility grid is abnormal 4. If the utility grid is normal and the wiring is correct but the malfunction continues to occur, please contact the supplier.
AL10	Leakage current is too high	Ground leakage current is too high	 Disconnect the photovoltaic array from the photovoltaic inverter and disconnected the utility grid. Confirm the wiring and architecture of the utility grid. Restart the photovoltaic inverter. If the malfunction continues to occur, please contact the supplier.
AL11	Abnormal insulation resistance	The DC input insulation resistance of the photovoltaic inverter is too low and does not comply with specifications	 Disconnect the photovoltaic array from the photovoltaic inverter and disconnected the utility grid. Confirm whether the DC input terminal of the photovoltaic inverter and the photovoltaic array is abnormal (such as short-circuit or ruptured cable insulation cover) Restart the photovoltaic inverter. If the malfunction continues to occur, please contact the supplier. 4.
AL21	RMS calculation error	The RMS calculation time is too long when the photovoltaic inverter is operating	If the malfunction continues to occur, please contact the supplier.

		When	the	
		photovoltaic		
		inverter	starts	
	Photovoltai	executing	DC	If the malfunction continues to occur
AL23	c inverter	power	on	n the manufaction continues to occur,
	initialization	sequence,	the	please contact the supplier.
		main contro	oller is	
		still in its	initial	
		status		

Energy storage system malfunction and system abnormality code description:

LCD Display	Cause	Description	Troubleshooting
ER00	Abnormal DC_BUS charging	The DC_BUS is unable to reach the value set when the machine is performing DC power on sequence.	
ER02	Sub-control failure	Sub-controller unable to operate normally.	
ER07	DC_BUS voltage too high	DC_BUS voltage is higher or lower than the value set	1. Disconnect the photovoltaic array from the photovoltaic
ER08	DC_BUS voltage too low	during the operation process	inverter.
ER12	Abnormal DC_BUS charging	DC_BUS unable to reach the value set before connecting to the utility grid	2.Wait until the LCD display goes off completely and then reconnect the
ER17	EEPROM error	Unable to access EEPROM	photovoltaic array with the
ER22	Abnormal output relay	Abnormal AC output relay	photovoltaic inverter.
ER24	Abnormal output current detected	Abnormal output current when machine is executing DC power on sequence	3. If the malfunction continues to occur, please contact the supplier.
ER25	String A input over-current	Input current exceeded	
ER26	String B input over-current	rated value	
ER27	String A&B short-circuit	Input short-circuit	

ER06	EPO	Emergency power off. Photovoltaic inverter will stop output and remain in standby mode	 Remove the EPO terminal If the malfunction continues to occur, please contact the supplier.
ER09	Photovoltaic inverter AC output over-current	Photovoltaic inverter AC output current exceeds rated value	
ER11	Photovoltaic inverter over-load	Photovoltaic inverter AC output power exceeds rated value	1. Switch the utility grid breaker to the OFF position, then check the
ER13	Photovoltaic inverter AC output short-circuit	Photovoltaic inverter AC output short-circuit or utility grid short-circuit	architecture of the utility grid system.2. If the utility grid system is
ER14	Abnormal photovoltaic inverter phase-lock	Photovoltaic inverter unable to synchronize with utility grid phase during AC power on sequence	normal and the malfunction continues to occur, please contact the supplier.
ER29	DC component in photovoltaic inverter AC output too high	DC component in AC output exceeds rated value	
ER10	Chassis over-temperatur e	Temperature inside chassis too high	1. Trytolowerthetemperaturearoundthephotovoltaic inverter.
ER18	Heat sink over-temperatur e	Heat sink temperature too high	2. If the malfunction continues to occur, please contact the supplier.
ER44	Battery over-voltage(H W)	Hardware circuit detects battery voltage too high	1. Wait until the voltage/current returns to
ER45	Battery under-voltage(H W)	Hardware circuit detects battery voltage too low	just reset the abnormality.
ER46	DC bus over-voltage(H W)	Hardware circuit detects DC bus voltage too high	to occur, please contact the supplier.

ER47	DC bus under-voltage(H W)	Hardware circuit detects DC bus voltage too low	
ER50	DC/DC hardware over current (HW)	Battery terminal short-circuit or DC/DC hardware malfunction	
ER52	Abnormal DC/DC hardware (HW)	Hardware protection circuit activated	
ER60	Battery over-voltage(F W)	Firmware program detected battery voltage too high	
ER61	Battery under-voltage(F W)	Firmware program detected battery voltage too low	
ER62	DC bus over-voltage(F W)	Firmware program detected DC bus voltage too high	
ER63	DC bus under-voltage(F W)	Firmware program detected DC bus voltage too low	
ER64	DC bus 1 over-voltage (FW)	Firmware program detected DC bus 1 voltage too high	
ER65	DC bus 2 over-voltage (FW)	Firmware program detected DC bus 2 voltage too high	
ER66	Charging current too high (FW)	Firmware program detected charging current is too high	
ER67	Discharge current too high (FW)	Firmware program detected discharge current is too high	
ER68	Temperature point 1 over-temperatur e	Firmware program detected DC/DC temperature point 1 over-temperature	1. Try to lower the temperature around the photovoltaic inverter.

ER69	Temperature point 2 over-temperatur e	Firmware program detected DC/DC temperature point 2 over-temperature	2. If the malfunction continues to occur, please contact the supplier.
ER75	DC breaker open-circuit	DC breaker on the ESS-INV is open-circuit	Check if the DC breaker is off.
ER76	Write to memory	Abnormal FRAM memory failed write function	If the malfunction continues to occur, please contact the supplier.
ER77	Memory access failed	Abnormal FRAM memory read function	If the malfunction continues to occur, please contact the supplier.
ER91	Battery number setting error	Number of battery pack set different from actual number	Please check System Setting – Battery Pack Number is correct
ER92	BMS1 - over-voltage	BMS of battery pack 1 detects battery over-voltage	
ER93	BMS1 - under-voltage	BMS of battery pack 1 detects battery under-voltage	
ER94	BMS1 - over-current	BMS of battery pack 1 detects battery over-current	1.Wait until the abnormal parameters
ER95	BMS1 - short-circuit protection	BMS of battery pack 1 detects battery short-circuit	return to normal, then just reset the abnormality.
ER96	BMS1 - temperature too high	BMS of battery pack 1 detects battery temperature too high	2. If the malfunction continues to occur,
ER97	BMS1 - temperature too low	BMS of battery pack 1 detects battery temperature too low	please contact the supplier.
ER 100	BMS2 - over-voltage	BMS of batterypack 2detectsbatteryover-voltage	
ER 101	BMS2 - under-voltage	BMS of battery pack 2 detects battery under-voltage	

ED 102	BMS2 -	BMS of battery pack 2
ER 102	over-current	detects battery over-current
ER 103	BMS2 - short-circuit protection	BMS of battery pack 2 detects battery short-circuit
	BMS2 -	BMS of battery pack 2
ER 104	temperature too	detects battery temperature
	high	too high
	BMS2 -	BMS of battery pack 2
ER 105	temperature too	detects battery temperature
	low	too low
ER 108	BMS3 - over-voltage	BMS of battery pack 3 detects battery over-voltage
	BMS3 -	BMS of battery pack 3
ER 109	under-voltage	detects battery
	under-voltage	under-voltage
FR 110	BMS3 -	BMS of battery pack 3
	over-current	detects battery over-current
	BMS3 -	BMS of battery pack 3
ER 111	short-circuit	detects battery short-circuit
	protection	
	BMS3 -	BMS of battery pack 3
ER 112	temperature too	detects battery temperature
	BMS3 -	BMS of battery pack 3
FR 113	temperature too	detects battery temperature
	low	too low
		BMS of battery pack 4
ER 116	BMS4 -	detects battery
	over-voltage	over-voltage
	DMC4	BMS of battery pack 4
ER 117	BMS4 -	detects battery
		under-voltage
ED 110	BMS4 -	BMS of battery pack 4
	over-current	detects battery over-current
	BMS4 -	BMS of battery pack 4
ER 119	short-circuit	detects battery short-circuit
	protection	

	BMS4 -	BMS of battery pack 4	
ER 120	temperature too	detects battery temperature	
	high	too high	
	BMS4 -	BMS of battery pack 4	
ER 121	temperature too	detects battery temperature	
	low	too low	
	DMOG	BMS of battery pack 5	
ER 124	BIVISO -	detects battery	
	over-voltage	over-voltage	
	DMCE	BMS of battery pack 5	
ER 125	BIVISO -	detects battery	
	under-voltage	under-voltage	
ED 126	BMS5 -	BMS of battery pack 5	
ER 120	over-current	detects battery over-current	
	BMS5 -	DMC of bottom, pools 5	
ER 127	short-circuit	BINIS OF Dattery pack 5	
	protection		
	BMS5 -	BMS of battery pack 5	
ER 128	temperature too	detects battery temperature	
	high	too high	
	BMS5 -	BMS of battery pack 5	
ER 129	temperature too	detects battery temperature	1. Wait until the
	low	too low	abnormal
	PMS6	BMS of battery pack 6	parameters return
ER 132		detects battery	to normal, then
	over-voltage	over-voltage	just reset the
	BMS6	BMS of battery pack 6	abnormality.
ER 133		detects battery	2. If the malfunction
	under-voltage	under-voltage	continues to
ER 13/	BMS6 -	BMS of battery pack 6	occur, please
	over-current	detects battery over-current	contact the
	BMS6 -	BMS of battery pack 6	supplier.
ER 135	short-circuit	detects battery short-circuit	
	protection		
	BMS6 -	BMS of battery pack 6	
ER 136	temperature too	detects battery temperature	
	high	too high	

	BMS6 -	BMS of battery pack 6
ER 137	temperature too	detects battery temperature
	low	too low

5. Specifications Table

Model Name	ESS-INV-3	ESS-INV-4	ESS-INV-5	5
PV array input				
Recommended PV power	2700-3600Wp	3600 - 4800W	/p 4500 - 6000Wp	Np
Rated power	3300W	4000W	5000W	
Rated voltage		360Vd	c	
Max. input voltage(Voc)		500Vd	c	
Start-up voltage		60Vdc		
Operating voltage range		120–500	Vdc	
Max. input current	13A x Number of MPPT tracker		MPPT tracker	
Max. short circuit current(Isc)		15A x Number of N	MPPT tracker	
Max. inverter backfeed current to the array		0A		
MPP voltage range		150-450	Vdc	
MPP voltage range		230-450	Vdc	
(Nominal output)	230-450Vdc			
Number of MPPT tracker	1	2	2	
Topology		Non-isolate	d type	
AC Input / Output				
Nominal AC power	3300W	4000W	5000W*	
Peak power	3300Wp	4000Wp	5000Wp*	
Max. apparent power	3300VA	4000VA	5000VA*	
Nominal AC voltage		230Va	с	
Connection		1-Phase / 2-Wi	re(L,N,PE)	
Operating AC voltage range		184-264	Vac	
Nominal current	13A	17.4A	21.7A	
Max. current (output fault current)	15A	20A	23A	
Max. over current protection	15.6A	20.9A	24A	
Inrush current (a.c.A Peak)		60A ≦1i	ms	
Frequency		50Hz/60Hz, Aut	o-selection	
Operating frequency range	50Hz: 47.5	5~50.2Hz	60Hz: 59.3~60.5Hz	Z
Power factor		0.9 lagging to 0	.9 leading	
Current distortion	Total harmonic distortion <3%			
	Single order harmonic distortion<2%			

*De-rating to 4600W/Wp/VA for Germany.

Applicable Battery specs	
Nominal voltage	48Vdc
Applicable battery type	Li-ion / LiFePO4 / Lead-acid / Aqueous Hybrid Ion battery
D.C. input for battery discharge:	
Voltage(nominal or range)	40-60Vdc
Nominal battery voltage	48Vdc
Current(Max. continuous)	55A
Max. power	2500W
D.C. input for battery charge	
Voltage(nominal or range)	40-60Vdc
Nominal battery voltage	48Vdc
Current(Max. continuous)	55A
Max. power	2500W
Voltage(nominal or range)	CC,CV
Topology	Isolated type
Efficiency	
Max. conversion efficiency	>97.1%
Euro efficiency	>96.5%
System efficiency	>94%
Environmental	
	-25°C to +50°C / -13 °F ~ 122 °F
Ambient Temperature	-25°C to +40°C / -13 °F ~ 104 °F
	(For output AC full power)
Pollution degree	3
Overvoltage category level	DC circuit II, AC circuit III
Humidity	$0 \sim 100\%$ (Without condensation)
Altitude	0~2000M / 0~6600ft
Altitude Mechanical	0~2000M / 0~6600ft
Altitude Mechanical Dimension(HxWxD)	0~2000M / 0~6600ft 810 x 455 x 270mm
Altitude Mechanical Dimension(HxWxD) Weight	0~2000M / 0~6600ft 810 x 455 x 270mm 30kg
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection	0 100 /0(Williou condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection Cooling	0 100 /0(Williou condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection Cooling AC connection	0 100%(Willibut condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection Screw Terminals
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection Cooling AC connection DC connection	0 10076(Williblat condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection Screw Terminals MC4
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection Cooling AC connection DC connection Audible noise	0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection Screw Terminals MC4 <25dBA
Altitude Mechanical Dimension(HxWxD) Weight Degree of protection Cooling AC connection DC connection Audible noise Mounting	0 100 / (Will but condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection Screw Terminals MC4 <25dBA Wall Mount(mounting bracket included)
AltitudeMechanicalDimension(HxWxD)WeightDegree of protectionCoolingAC connectionDC connectionAudible noiseMountingCommunication / Front panel	0 100 / (Willibut condensation) 0~2000M / 0~6600ft 810 x 455 x 270mm 30kg IP65, outdoor Convection Screw Terminals MC4 <25dBA Wall Mount(mounting bracket included)

Display	Graphic LCD+LED panel(2.9")			
Protection				
Utility grid	Over/under Voltage, Over/under Freq, Ground Fault,			
	DC Isolation Fault			
Islanding protection	Passive: Voltage phase jump	Active: Reactive power		
	detection.	control.		
Over temperature	De-rating output power			
EPO(Emergency power off)	Inverter powers off and stops its output and remains in standby			
	mode			
DC(PV) reverse polarity protection	Internal diode clamp			
Internal DC & AC surge protection	Tested to 2kV			
Certification				
Grid standard	VDE-AR-N 4105, AS4777.2:2015			
Safety	IEC 62109-1, IEC62109-2, IEC 60529			
	Protection class: I			
EMC	EN 61000-6-2, EN 61000-6-3, EN 61000-3-2, EN 61000-3-3,			
	EN 61000-3-11, EN 61000-3-12,			
Warranty	5 years			

Model name	ESS-BAT		
Battery spec			
Manufacturer	Panasonic / Samsung		
Battery type	Li-ion		
Nominal battery voltage	48V		
Max. battery voltage	53.3V		
Capacity	6kWh(3 packs) or 12kWh(6 packs)		
Cycle life	6000(80% DoD/0.5C)		
Warranty	10 years		
Discharge			
Equipped battery pack	1	2	>2
Max. discharge power	1000W	2000W	2500W
Max. discharge current	20A	40A	55A
Discharge end voltage	45.5V		
Charge			
Equipped battery pack	1	2	>2
Max. charge power	1000W	2000W	2500W
Max. charge current	20A	40A	55A
Charge voltage	53.3V		
Environmental data			
Operating ambient temperature	-25°C to +50°C / -13 °F ~ 122 °F		
Pollution degree	PD3		
Relative Humidity	0 – 100 % non-condensing		
Altitude	0~2000M / 0~6600ft		
Mechanical			
Dimension(HxWxD)	810 x 366 x 270mm		
Weight	60kg		
Protection Class	IP65, Outdoor		
Cooling	Natural		
Mounting	Wall Mount (mounting bracket included)		

Model name	ESS-MET	
Measures	P, Q, A, V, F, PF, Energy	
Accuracy and resolution	<1%, 1%	
System connection type	1p2w / 1p3w	
Nominal grid voltage/ voltage range	110-230Vac / 85-265Vac	
Nominal grid frequency/ frequency range	50-60Hz / 45-65Hz	
Power supply and consumption	<10W	
Dimension(HxWxD)	403 x 343 x 106mm	
Weight	7kg	
Protection class	IP20, Indoor	
Safety and EMC	IEC 61010-1, IEC 61326-1	
Operating ambient temperature	0°C to +40°C	
Storage ambient temperature	-20°C to +70°C	
Relative Humidity	0 – 95 % non-condensing	
Display size	7 inch	
Display resolution	800x480	
Display touch	Resistive Touch Screen	
Display Backlight Module	LED	
Display operating system	Windows CE 6.0	
Power LED	Green x 1, Red x 1	
RTC	Yes	
Communication interface	RS485-1, RS485-2, Ethernet 10/100 (RJ45)	
Storage	SD card (Up to 16G)	

